Antifreeze proteins

نویسندگان

  • Irena Roterman
  • Mateusz Banach
  • Leszek Konieczny
چکیده

The antifreeze protein (AFP) activity is explained using two models. The first model is using ice binding and the second is using antiice structuralization of water molecules. The description of AFP function using anti-ice structuralization of water molecules is less explored. Therefore, it is of interest to explain AFP function using this model. Protein folding is often described using models where hydrophobic residues move away from water getting buried and hydrophilic residues are exposed to the surface. Thus, the 3D Gauss function stretched on the protein molecule describes the hydrophobicity distribution in a protein molecule. Small antifreeze proteins (less than 150 residues) are often represented by structures with hydrophobic core. Large antifreeze proteins (above 200 residues) contain solenoid (modular repeats). The hydrophobic field of solenoid show different distribution with linear propagation of the bands of different hydrophobicity level having high and low hydrophobicity that is propagated parallel to the long axis of solenoid. This specific ordering of hydrophobicity implies water molecules ordering different from ice. We illustrate this phenomenon using two antifreeze proteins to describe the hypothesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethylene induces antifreeze activity in winter rye leaves.

Antifreeze activity is induced by cold temperatures in winter rye (Secale cereale) leaves. The activity arises from six antifreeze proteins that accumulate in the apoplast of winter rye leaves during cold acclimation. The individual antifreeze proteins are similar to pathogenesis-related proteins, including glucanases, chitinases, and thaumatin-like proteins. The objective of this study was to ...

متن کامل

Antifreeze proteins in overwintering plants: a tale of two activities.

Antifreeze proteins are found in a wide range of overwintering plants where they inhibit the growth and recrystallization of ice that forms in intercellular spaces. Unlike antifreeze proteins found in fish and insects, plant antifreeze proteins have multiple, hydrophilic ice-binding domains. Surprisingly, antifreeze proteins from plants are homologous to pathogenesis-related proteins and also p...

متن کامل

Introduction of Insect Antifreeze Protein Genes into the Model Plant Arabidopsis thaliana

Injury inflicted by frost and freezing is found in all plants exposed to such damaging temperatures. Antifreeze proteins protect against these injurious temperatures by providing freeze resistance to organisms in which they occur. The expression of antifreeze proteins in a plant is a possible means of increasing the frost resistance and freeze tolerance of plants. Freeze tolerance curves of non...

متن کامل

Solution structure of the antifreeze-like domain of human sialic acid synthase.

The structure of the C-terminal antifreeze-like (AFL) domain of human sialic acid synthase was determined by NMR spectroscopy. The structure comprises one alpha- and two single-turn 3(10)-helices and two beta-strands, and is similar to those of the type III antifreeze proteins. Evolutionary trace analyses of the type III antifreeze protein family suggested that the class-specific residues in th...

متن کامل

Using Support Vector Machine and Evolutionary Profiles to Predict Antifreeze Protein Sequences

Antifreeze proteins (AFPs) are ice-binding proteins. Accurate identification of new AFPs is important in understanding ice-protein interactions and creating novel ice-binding domains in other proteins. In this paper, an accurate method, called AFP_PSSM, has been developed for predicting antifreeze proteins using a support vector machine (SVM) and position specific scoring matrix (PSSM) profiles...

متن کامل

Calcium interacts with antifreeze proteins and chitinase from cold-acclimated winter rye.

During cold acclimation, winter rye (Secale cereale) plants accumulate pathogenesis-related proteins that are also antifreeze proteins (AFPs) because they adsorb onto ice and inhibit its growth. Although they promote winter survival in planta, these dual-function AFPs proteins lose activity when stored at subzero temperatures in vitro, so we examined their stability in solutions containing CaCl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017